R/select_rate.R
, R/select_rate.ft.R
select_rate.Rd
The functions in respR
are powerful, but outputs can be large
and difficult to explore, especially when there are hundreds to thousands
of results, for example the output of auto_rate
on large datasets, or the
outputs of calc_rate.int
from long intermittent-flow experiments.
The select_rate
and select_rate.ft
functions help explore, reorder, and
filter convert_rate
and convert_rate.ft
results according to various
criteria. For example, extracting only positive or negative rates, only the
highest or lowest rates, only those from certain data regions, and numerous
other methods that allow advanced filtering of results so the final
selection of rates is well-defined towards the research question of
interest. This also allows for highly consistent reporting of results and
rate selection criteria.
Multiple selection criteria can be applied by saving the output and
processing it through the function multiple times using different methods,
or alternatively via piping (%>%
or %>%
). See Examples.
Note: when choosing a method
, keep in mind that to remain
mathematically consistent, respR
outputs oxygen consumption (i.e.
respiration) rates as negative values. This is particularly important in
the difference between highest/lowest
and minimum/maximum
methods. See
Details.
When a rate result is omitted by the selection criteria, it is removed from
the $rate.output
element of the convert_rate
object, and the associated
data in $summary
(i.e. that row) is removed. Some methods can also be
used with an n = NULL
input to reorder the $rate
and $summary
elements in various ways.
The summary table $rank
column is context-specific, and what it
represents depends on the type of experiment analysed or the function used
to determine the rates. If numeric values were converted, it is the order
in which they were entered. Similarly, if calc_rate
was used, it is the
order of rates as entered using from
and to
(if multiple rates were
determined). For auto_rate
it relates to the method
input. For example
it indicates the kernel density ranking if the linear
method was used,
the ascending or descending ordering by absolute rate value if lowest
or
highest
were used, or the numerical order if minimum
or maximum
were
used. For intermittent-flow experiments analysed via calc_rate.int
and
auto_rate.int
these will be ranked within each replicate as indicated
in the $rep
column. The $rep
and $rank
columns can be used to keep
track of selection or reordering because the original values will be
retained unchanged through selection or reordering operations. The original
order can always be restored by using method = "rep"
or method = "rank"
with n = NULL
. In both these cases the $summary
table and
$rate.output
will be reordered by $rep
(if used) then $rank
to
restore the original ordering.
Note that if you are analysing intermittent-flow data and used
auto_rate.int
but changed the n
input to output more than one rate
result per replicate, the selection or reordering operations will not take
any account of this. You should carefully consider if or why you need to
output multiple rates per replicate in the first place. If you have, you
can perform selection on individual replicates by using method = "rep"
to
select individual replicates then apply additional selection criteria.
select_rate(x, method = NULL, n = NULL)
select_rate.ft(x, method = NULL, n = NULL)
list. An object of class convert_rate
or convert_rate_select
.
string. Method by which to select or reorder rate results. For most methods matching results are retained in the output. See Details.
numeric. Number, percentile, or range of results to retain or omit
depending on method
. Default is NULL
, in which case some methods will
instead reorder the results. See Details.
The output of select_rate
is a list
object which retains the
convert_rate
class, with an additional convert_rate_select
class
applied.
It contains two additional elements: $original
contains the original,
unaltered convert_rate
object, which will be retained unaltered through
multiple selection operations, that is even after processing through the
function multiple times. $select_calls
contains the calls for every
selection operation that has been applied to the $original
object, from
the first to the most recent. These additional elements ensure the output
contains the complete, reproducible history of the convert_rate
object
having been processed.
These are the current methods by which rates in convert_rate
objects can be selected. Matching results are retained in the output.
Some methods can also be used to reorder the results. Note that the methods
selecting by rate value operate on the $rate.output
element, that is the
final converted rate value.
positive
, negative
Selects all positive
(>0) or negative
(<0) rates. n
is ignored.
Useful, for example, in respirometry on algae where both oxygen consumption
and production rates are recorded. Note, respR
outputs oxygen consumption
(i.e. respiration) rates as negative values, production rates as
positive.
nonzero
, zero
Retains all nonzero
rates (i.e. removes any zero rates), or retains
only zero
rates (i.e. removes all rates with any value). n
is
ignored.
lowest
, highest
These methods can only be used when rates all have the same sign, that is
are all negative or all positive. These select the lowest and highest
absolute rate values. For example, if rates are all negative, method = 'highest'
will retain the highest magnitude rates regardless of the
sign. n
should be an integer indicating the number of lowest/highest
rates to retain. If n = NULL
the results will instead be reordered by
lowest or highest rate without any removed. See minimum
and maximum
options for extracting numerically lowest and highest rates.
lowest_percentile
, highest_percentile
These methods can also only be used when rates all have the same sign.
These retain the n
'th lowest or highest percentile of absolute rate
values. For example, if rates are all negative method = 'highest_percentile'
will retain the highest magnitude n
'th percentile
regardless of the sign. n
should be a percentile value between 0 and 1.
For example, to extract the lowest 10th percentile of absolute rate values,
you would enter method = 'lowest_percentile', n = 0.1
.
minimum
, maximum
In contrast to lowest
and highest
, these are strictly numerical
options which take full account of the sign of the rate, and can be used
where rates are a mix of positive and negative. For example, method = 'minimum'
will retain the minimum numerical value rates, which would
actually be the highest oxygen uptake rates. n
is an integer indicating
how many of the min/max rates to retain. If n = NULL
the results will
instead be reordered by minimum or maximum rate without any removed.
minimum_percentile
, maximum_percentile
Like min
and max
these are strictly numerical inputs which retain the
n
'th minimum or maximum percentile of the rates and take full account of
the sign. Here n
should be a percentile value between 0 and 1. For
example, if rates are all negative (i.e. typical uptake rates), to extract
the lowest 10th percentile of rates, you would enter method = 'maximum_percentile', n = 0.1
. This is because the lowest negative rates
are numerically the maximum rates (highest/lowest
percentile methods
would be a better option in this case however).
rate
Allows you to enter a value range of output rates to be retained. Matching
regressions in which the rate value falls within the n
range (inclusive)
are retained. n
should be a vector of two values. For example, to retain
only rates where the rate
value is between 0.05 and 0.08: method = 'rate', n = c(0.05, 0.08)
. Note this operates on the $rate.output
element, that is converted rate values.
rep
, rank
These refer to the respective columns of the $summary
table. For these,
n
should be a numeric vector of integers of rep
or rank
values to
retain. To retain a range use regular R syntax, e.g. n = 1:10
. If n = NULL
no results will be removed, instead the results will be reordered
ascending by rep
(if it contains values) then rank
. Essentially this
restores the original ordering if other reordering operations have been
performed.
The values in these columns depend on the functions used to calculate
rates. If calc_rate
was used, rep
is NA
and rank
is the order of
rates as entered using from
and to
(if multiple rates were determined).
For auto_rate
, rep
is NA
and rank
relates to the method
input.
For example it indicates the kernel density ranking if the linear
method
was used, the ascending or descending ordering by absolute rate value if
lowest
or highest
were used, or by numerical order if minimum
or
maximum
were used. If calc_rate.int
or auto_rate.int
were used, rep
indicates the replicate number and the rank
column represents rank
within the relevant replicate, and will generally be filled with the
value 1
. Therefore you need to adapt your selection criteria
appropriately towards which of these columns is relevant.
rep_omit
, rank_omit
These refer to the rep
and rank
columns of the $summary
table and
allow you to exclude rates from particular replicate or rank values. For
these, n
should be a numeric vector of integers of rep
or rank
values
to OMIT. To omit a range use regular R syntax, e.g. n = 1:10
.
rsq
, row
, time
, density
These methods refer to the respective columns of the $summary
data frame.
For these, n
should be a vector of two values. Matching regressions in
which the respective parameter falls within the n
range (inclusive) are
retained. To retain all rates with a R-Squared 0.90 or above: method = 'rsq', n = c(0.9, 1)
. The row
and time
ranges refer to the
$row
-$endrow
or $time
-$endtime
columns and the original raw data
($dataframe
element of the convert_rate
object), and can be used to
constrain results to rates from particular regions of the data (although
usually a better option is to subset_data()
prior to analysis). Note
time
is not the same as duration
- see later section - and row
refers
to rows of the raw data, not rows of the summary table - see manual
method for this. For all of these methods, if n = NULL
no results will be
removed, instead the results will be reordered by that respective column
(descending for rsq
and density
, ascending for row
, and time
).
intercept
, slope
These methods are similar to the above and refer to the intercept_b0
and
slope_b1
summary table columns. Note these linear model coefficients
represent different things in flowthrough vs. other analyses. In
non-flowthrough analyses slopes represent rates and coefficients such as a
high r-squared are important. In flowthrough, slopes represent the
stability of the data region, in that the closer the slope is to zero, the
less the delta oxygen values in that region vary, which is an indication of
a region of stable rates. In addition, intercept values close to the
calculated mean delta of the region also indicate a region of stable rates.
Therefore these methods are chiefly useful in selection of flowthrough
results, for example slopes close to zero. If n = NULL
no results will be
removed, instead the results will be reordered by ascending value by that
column.
time_omit
, row_omit
These methods refer to the original data, and are intended to exclude
rates determined over particular data regions. This is useful in the case
of, for example, a data anomaly such as a spike or sensor dropout. For
these inputs, n
are values (a single value, multiple values, or a range)
indicating data timepoints or rows of the original data to exclude. Only
rates (i.e. regressions) which do not utilise those particular values are
retained in the output. For example, if an anomaly occurs precisely at
timepoint 3000, time_omit = 3000
means only rates determined solely over
regions before or after this will be retained. If it occurs over a range
this can be entered as, time_omit = c(3000,3200)
. If you want to exclude
a regular occurrence, for example the flushes in intermittent-flow
respirometry, or any other non-continuous values they can be entered as a
vector, e.g. row_omit = c(1000, 2000, 3000)
. Note this last option can be
extremely computationally intensive when the vector or dataset is large, so
should only be used when a range cannot be entered as two values, which is
much faster. For both methods, input values must match exactly to values
present in the dataset.
oxygen
This can be used to constrain rate results to regions of the data based on
oxygen values. n
should be a vector of two values in the units of oxygen
in the raw data. Only rate regressions in which all datapoints occur within
this range (inclusive) are retained. Any which use even a single value
outside of this range are excluded. Note the summary table columns oxy
and endoxy
refer to the first and last oxygen values in the rate
regression, which should broadly indicate which results will be removed or
retained, but this method examines every oxygen value in the regression,
not just first and last.
oxygen_omit
Similar to time_omit
and row_omit
above, this can be used to omit
rate regressions which use particular oxygen values. For this n
are
values (single or multiple) indicating oxygen values in the original raw
data to exclude. Every oxygen value used by each regression is checked, and
to be excluded an n
value must match exactly to one in the data.
Therefore, note that if a regression is fit across the data region where
that value would occur, it is not necessarily excluded unless that exact
value occurs. You need to consider the precision of the data values
recorded. For example, if you wanted to exclude any rate using an oxygen
value of 7
, but your data are recorded to two decimals, a rate fit across
these data would not be excluded: c(7.03, 7.02, 7.01, 6.99, 6.98, ...)
.
To get around this you can use regular R syntax to input vectors at the
correct precision, such as seq, e.g. seq(from = 7.05, to = 6.96, by = -0.01)
. This can be used to input ranges of oxygen values to exclude.
duration
This method allows selection of rates which have a specific duration range.
Here, n
should be a numeric vector of two values. Use this to set minimum
and maximum durations in the time units of the original data. For example,
n = c(0,500)
will retain only rates determined over a maximum of 500 time
units. To retain rates over a minimum duration, set this using the minimum
value plus the maximum duration or simply infinity. For example, for rates
determined over a minimum of 500 time units n = c(500,Inf)
)
manual
This method simply allows particular rows of the $summary
data frame to
be manually selected to be retained. For example, to keep only the top row
method = 'manual', n = 1
. To keep multiple rows use regular R
selection
syntax: n = 1:3
, n = c(1,2,3)
, n = c(5,8,10)
, etc. No value of n
should exceed the number of rows in the $summary
data frame. Note this is
not necessarily the same as selecting by the rep
or rank
methods, as
the table could already have undergone selection or reordering.
manual_omit
As above, but this allows particular rows of the $summary
data frame to
be manually selected to be omitted.
overlap
This method removes rates which overlap, that is regressions which are
partly or completely fit over the same rows of the original data. This is
useful in particular with auto_rate
results. The auto_rate
linear
method may identify multiple linear regions, some of which may
substantially overlap, or even be completely contained within others. In
such cases summary operations such as taking an average of the rate values
may be questionable, as certain values will be weighted higher due to these
multiple, overlapping results. This method removes overlapping rates, using
n
as a threshold to determine degree of permitted overlap. It is
recommended this method be used after all other selection criteria have
been applied, as it is quite aggressive about removing rates, and can be
very computationally intensive when there are many results.
While it can be used with auto_rate
results determined via the rolling
,
lowest
, or highest
methods, by their nature these methods produce all
possible overlapping regressions, ordered in various ways, so other
selection methods are more appropriate. The overlap
method is generally
intended to be used in combination with the auto_rate
linear
results,
but may prove useful in other analyses.
Permitted overlap is determined by n
, which indicates the proportion of
each particular regression which must overlap with another for it to be
regarded as overlapping. For example, n = 0.2
means a regression would
have to overlap with at least one other by at least 20% of its total length
to be regarded as overlapping.
The "overlap"
method performs two operations:
First, regardless of the n
value, any rate regressions which are
completely contained within another are removed. This is also the only
operation if n = 1
.
Secondly, for each regression in $summary
starting from the bottom of the
summary table (usually the lowest ranked result, but this depends on the
analysis used and if any reordering has been already occurred), the
function checks if it overlaps with any others (accounting for n
). If
not, the next lowest is checked, and the function progresses up the summary
table until it finds one that does. The first to be found overlapping is
then removed, and the process repeats starting again from the bottom of the
summary table. If no reordering to the results has occurred, this means
lower ranked results are removed first. This is repeated iteratively until
only non-overlapping rates (accounting for n
) remain.
If n = 0
, only rates which do not overlap at all, that is share no
data, are retained. If n = 1
, only rates which are 100% contained within
at least one other are removed.
Several methods can be used to reorder results rather than select them, by
not entering an n
input (that is, letting the n = NULL
default be
applied). Several of these methods are named the same as those in
auto_rate
for consistency and have equivalent outcomes, so this allows
results to be reordered to the equivalent of that method's results without
re-running the auto_rate
analysis.
The "row"
and "rolling"
methods reorder sequentially by the starting
row of each regression ($row
column).
The "time"
method reorders sequentially by the starting time of each
regression ($time
column).
"linear"
and "density"
are essentially identical, reordering by the
$density
column. This metric is only produced by the auto_rate
linear
method, so will not work with any other results.
"rep"
or "rank"
both reorder by the $rep
then $rank
columns. What
these represents is context dependent - see Replicate and Rank columns
section above. Each summary row rep
and rank
value is retained
unchanged regardless of how the results are subsequently selected or
reordered, so this will restore the original ordering after other methods
have been applied.
"rsq"
reorders by $rsq
from highest value to lowest.
"intercept"
and "slope"
reorder by the $intercept_b0
and $slope_b1
columns from lowest value to highest.
"highest"
and "lowest"
reorder by absolute values of the $rate.output
column, that is highest or lowest in magnitude regardless of the sign. They
can only be used when rates all have the same sign.
"maximum"
and "minimum"
reorder by numerical values of the
$rate.output
column, that is maximum or minimum in numerical value taking
account of the sign, and can be used when rates are a mix of negative and
positive.
For convert_rate
objects which contain rates which have been converted
from numeric values, the summary table will contain a limited amount of
information, so many of the selection or reordering methods will not work.
In this case a warning is given and the original input is returned.
There is no plotting functionality in select_rate
. However since the
output is a convert_rate
object it can be plotted. See the Plot
section in help("convert_rate")
. To plot straight after a selection
operation, pipe or enter the output in plot()
. See Examples.
This help file can be found online here, where it is much easier to read.
For additional help, documentation, vignettes, and more visit the respR
website at https://januarharianto.github.io/respR/
# \donttest{
## Object to filter
ar_obj <- inspect(intermittent.rd, plot = FALSE) %>%
auto_rate(plot = FALSE) %>%
convert_rate(oxy.unit = "mg/L",
time.unit = "s",
output.unit = "mg/h",
volume = 2.379) %>%
summary()
#> inspect: Applying column default of 'time = 1'
#> inspect: Applying column default of 'oxygen = 2'
#> inspect: No issues detected while inspecting data frame.
#>
#> # print.inspect # -----------------------
#> Time O2
#> numeric pass pass
#> Inf/-Inf pass pass
#> NA/NaN pass pass
#> sequential pass -
#> duplicated pass -
#> evenly-spaced pass -
#>
#> -----------------------------------------
#> auto_rate: Applying default 'width' of 0.2
#> convert_rate: Object of class 'auto_rate' detected. Converting all rates in '$rate'.
#>
#> # summary.convert_rate # ----------------
#> Summary of all converted rates:
#>
#> rep rank intercept_b0 slope_b1 rsq density row endrow time endtime oxy endoxy rate adjustment rate.adjusted rate.input oxy.unit time.unit volume mass area S t P rate.abs rate.m.spec rate.a.spec output.unit rate.output
#> 1: NA 1 8.523235 -0.0006079352 0.993 7411.6745 2201 3285 2200 3284 7.14 6.53 -0.0006079352 NA NA -0.0006079352 mg/L sec 2.379 NA NA NA NA NA -5.206600 NA NA mgO2/hr -5.206600
#> 2: NA 2 7.112371 -0.0005658679 0.993 4432.7633 519 1564 518 1563 6.88 6.23 -0.0005658679 NA NA -0.0005658679 mg/L sec 2.379 NA NA NA NA NA -4.846319 NA NA mgO2/hr -4.846319
#> 3: NA 3 2.917014 0.0010782058 0.704 1076.8737 3193 4069 3192 4068 6.61 7.11 0.0010782058 NA NA 0.0010782058 mg/L sec 2.379 NA NA NA NA NA 9.234186 NA NA mgO2/hr 9.234186
#> 4: NA 4 3.486415 0.0016056934 0.755 813.9211 1537 2414 1536 2413 6.26 7.06 0.0016056934 NA NA 0.0016056934 mg/L sec 2.379 NA NA NA NA NA 13.751801 NA NA mgO2/hr 13.751801
#> 5: NA 5 3.137644 0.0010175037 0.691 370.9729 3175 4087 3174 4086 6.60 7.07 0.0010175037 NA NA 0.0010175037 mg/L sec 2.379 NA NA NA NA NA 8.714309 NA NA mgO2/hr 8.714309
#> 6: NA 6 3.204332 0.0009992067 0.687 318.1555 3169 4092 3168 4091 6.60 7.06 0.0009992067 NA NA 0.0009992067 mg/L sec 2.379 NA NA NA NA NA 8.557605 NA NA mgO2/hr 8.557605
#> 7: NA 7 3.251506 0.0009862129 0.684 288.6348 3165 4096 3164 4095 6.61 7.03 0.0009862129 NA NA 0.0009862129 mg/L sec 2.379 NA NA NA NA NA 8.446321 NA NA mgO2/hr 8.446321
#> 8: NA 8 3.298448 0.0009732830 0.680 257.0379 3161 4100 3160 4099 6.61 7.08 0.0009732830 NA NA 0.0009732830 mg/L sec 2.379 NA NA NA NA NA 8.335585 NA NA mgO2/hr 8.335585
#> 9: NA 9 3.341216 0.0009613981 0.678 238.3070 3158 4105 3157 4104 6.61 7.08 0.0009613981 NA NA 0.0009613981 mg/L sec 2.379 NA NA NA NA NA 8.233798 NA NA mgO2/hr 8.233798
#> 10: NA 10 3.410602 0.0009422536 0.673 216.0462 3152 4112 3151 4111 6.61 7.06 0.0009422536 NA NA 0.0009422536 mg/L sec 2.379 NA NA NA NA NA 8.069837 NA NA mgO2/hr 8.069837
#> 11: NA 11 3.399817 0.0009452223 0.674 214.4826 3153 4111 3152 4110 6.61 7.06 0.0009452223 NA NA 0.0009452223 mg/L sec 2.379 NA NA NA NA NA 8.095262 NA NA mgO2/hr 8.095262
#> 12: NA 12 8.493468 -0.0005968452 0.994 204.3694 2125 3454 2124 3453 7.18 6.45 -0.0005968452 NA NA -0.0005968452 mg/L sec 2.379 NA NA NA NA NA -5.111621 NA NA mgO2/hr -5.111621
#> 13: NA 13 8.488154 -0.0005949222 0.994 190.3709 2114 3464 2113 3463 7.21 6.45 -0.0005949222 NA NA -0.0005949222 mg/L sec 2.379 NA NA NA NA NA -5.095151 NA NA mgO2/hr -5.095151
#> 14: NA 14 8.496112 -0.0005978305 0.994 189.7498 2128 3444 2127 3443 7.21 6.45 -0.0005978305 NA NA -0.0005978305 mg/L sec 2.379 NA NA NA NA NA -5.120059 NA NA mgO2/hr -5.120059
#> 15: NA 15 3.706028 0.0014941168 0.743 155.6374 1512 2441 1511 2440 6.24 7.05 0.0014941168 NA NA 0.0014941168 mg/L sec 2.379 NA NA NA NA NA 12.796214 NA NA mgO2/hr 12.796214
#> 16: NA 16 3.713921 0.0014901077 0.743 154.6416 1511 2442 1510 2441 6.24 7.05 0.0014901077 NA NA 0.0014901077 mg/L sec 2.379 NA NA NA NA NA 12.761878 NA NA mgO2/hr 12.761878
#> -----------------------------------------
## Select only negative rates
ar_subs_neg <- select_rate(ar_obj, method = "negative") %>%
summary()
#> select_rate: Object contains both negative and positive rates. Ensure the chosen `method` is appropriate.
#> select_rate: Selecting all negative rate values. 'n' input ignored...
#> ----- Selection complete. 11 rate(s) removed, 5 rate(s) remaining -----
#>
#> # summary.convert_rate # ----------------
#> Summary of all converted rates:
#>
#> rep rank intercept_b0 slope_b1 rsq density row endrow time endtime oxy endoxy rate adjustment rate.adjusted rate.input oxy.unit time.unit volume mass area S t P rate.abs rate.m.spec rate.a.spec output.unit rate.output
#> 1: NA 1 8.523235 -0.0006079352 0.993 7411.6745 2201 3285 2200 3284 7.14 6.53 -0.0006079352 NA NA -0.0006079352 mg/L sec 2.379 NA NA NA NA NA -5.206600 NA NA mgO2/hr -5.206600
#> 2: NA 2 7.112371 -0.0005658679 0.993 4432.7633 519 1564 518 1563 6.88 6.23 -0.0005658679 NA NA -0.0005658679 mg/L sec 2.379 NA NA NA NA NA -4.846319 NA NA mgO2/hr -4.846319
#> 3: NA 12 8.493468 -0.0005968452 0.994 204.3694 2125 3454 2124 3453 7.18 6.45 -0.0005968452 NA NA -0.0005968452 mg/L sec 2.379 NA NA NA NA NA -5.111621 NA NA mgO2/hr -5.111621
#> 4: NA 13 8.488154 -0.0005949222 0.994 190.3709 2114 3464 2113 3463 7.21 6.45 -0.0005949222 NA NA -0.0005949222 mg/L sec 2.379 NA NA NA NA NA -5.095151 NA NA mgO2/hr -5.095151
#> 5: NA 14 8.496112 -0.0005978305 0.994 189.7498 2128 3444 2127 3443 7.21 6.45 -0.0005978305 NA NA -0.0005978305 mg/L sec 2.379 NA NA NA NA NA -5.120059 NA NA mgO2/hr -5.120059
#> -----------------------------------------
## Select only rates over 1000 seconds duration
ar_subs_dur <- select_rate(ar_obj, method = "duration", n = c(1000, Inf)) %>%
summary()
#> select_rate: Object contains both negative and positive rates. Ensure the chosen `method` is appropriate.
#> select_rate: Selecting rates with duration between 1000 and Inf...
#> ----- Selection complete. 11 rate(s) removed, 5 rate(s) remaining -----
#>
#> # summary.convert_rate # ----------------
#> Summary of all converted rates:
#>
#> rep rank intercept_b0 slope_b1 rsq density row endrow time endtime oxy endoxy rate adjustment rate.adjusted rate.input oxy.unit time.unit volume mass area S t P rate.abs rate.m.spec rate.a.spec output.unit rate.output
#> 1: NA 1 8.523235 -0.0006079352 0.993 7411.6745 2201 3285 2200 3284 7.14 6.53 -0.0006079352 NA NA -0.0006079352 mg/L sec 2.379 NA NA NA NA NA -5.206600 NA NA mgO2/hr -5.206600
#> 2: NA 2 7.112371 -0.0005658679 0.993 4432.7633 519 1564 518 1563 6.88 6.23 -0.0005658679 NA NA -0.0005658679 mg/L sec 2.379 NA NA NA NA NA -4.846319 NA NA mgO2/hr -4.846319
#> 3: NA 12 8.493468 -0.0005968452 0.994 204.3694 2125 3454 2124 3453 7.18 6.45 -0.0005968452 NA NA -0.0005968452 mg/L sec 2.379 NA NA NA NA NA -5.111621 NA NA mgO2/hr -5.111621
#> 4: NA 13 8.488154 -0.0005949222 0.994 190.3709 2114 3464 2113 3463 7.21 6.45 -0.0005949222 NA NA -0.0005949222 mg/L sec 2.379 NA NA NA NA NA -5.095151 NA NA mgO2/hr -5.095151
#> 5: NA 14 8.496112 -0.0005978305 0.994 189.7498 2128 3444 2127 3443 7.21 6.45 -0.0005978305 NA NA -0.0005978305 mg/L sec 2.379 NA NA NA NA NA -5.120059 NA NA mgO2/hr -5.120059
#> -----------------------------------------
## Reorder rates sequentially (i.e. by starting row)
ar_subs_dur <- select_rate(ar_obj, method = "row") %>%
summary()
#> select_rate: Object contains both negative and positive rates. Ensure the chosen `method` is appropriate.
#> select_rate: Reordering results by 'row' method.
#> ----- Reordering complete. 16 rate(s) reordered by 'row' method -----
#>
#> # summary.convert_rate # ----------------
#> Summary of all converted rates:
#>
#> rep rank intercept_b0 slope_b1 rsq density row endrow time endtime oxy endoxy rate adjustment rate.adjusted rate.input oxy.unit time.unit volume mass area S t P rate.abs rate.m.spec rate.a.spec output.unit rate.output
#> 1: NA 2 7.112371 -0.0005658679 0.993 4432.7633 519 1564 518 1563 6.88 6.23 -0.0005658679 NA NA -0.0005658679 mg/L sec 2.379 NA NA NA NA NA -4.846319 NA NA mgO2/hr -4.846319
#> 2: NA 16 3.713921 0.0014901077 0.743 154.6416 1511 2442 1510 2441 6.24 7.05 0.0014901077 NA NA 0.0014901077 mg/L sec 2.379 NA NA NA NA NA 12.761878 NA NA mgO2/hr 12.761878
#> 3: NA 15 3.706028 0.0014941168 0.743 155.6374 1512 2441 1511 2440 6.24 7.05 0.0014941168 NA NA 0.0014941168 mg/L sec 2.379 NA NA NA NA NA 12.796214 NA NA mgO2/hr 12.796214
#> 4: NA 4 3.486415 0.0016056934 0.755 813.9211 1537 2414 1536 2413 6.26 7.06 0.0016056934 NA NA 0.0016056934 mg/L sec 2.379 NA NA NA NA NA 13.751801 NA NA mgO2/hr 13.751801
#> 5: NA 13 8.488154 -0.0005949222 0.994 190.3709 2114 3464 2113 3463 7.21 6.45 -0.0005949222 NA NA -0.0005949222 mg/L sec 2.379 NA NA NA NA NA -5.095151 NA NA mgO2/hr -5.095151
#> 6: NA 12 8.493468 -0.0005968452 0.994 204.3694 2125 3454 2124 3453 7.18 6.45 -0.0005968452 NA NA -0.0005968452 mg/L sec 2.379 NA NA NA NA NA -5.111621 NA NA mgO2/hr -5.111621
#> 7: NA 14 8.496112 -0.0005978305 0.994 189.7498 2128 3444 2127 3443 7.21 6.45 -0.0005978305 NA NA -0.0005978305 mg/L sec 2.379 NA NA NA NA NA -5.120059 NA NA mgO2/hr -5.120059
#> 8: NA 1 8.523235 -0.0006079352 0.993 7411.6745 2201 3285 2200 3284 7.14 6.53 -0.0006079352 NA NA -0.0006079352 mg/L sec 2.379 NA NA NA NA NA -5.206600 NA NA mgO2/hr -5.206600
#> 9: NA 10 3.410602 0.0009422536 0.673 216.0462 3152 4112 3151 4111 6.61 7.06 0.0009422536 NA NA 0.0009422536 mg/L sec 2.379 NA NA NA NA NA 8.069837 NA NA mgO2/hr 8.069837
#> 10: NA 11 3.399817 0.0009452223 0.674 214.4826 3153 4111 3152 4110 6.61 7.06 0.0009452223 NA NA 0.0009452223 mg/L sec 2.379 NA NA NA NA NA 8.095262 NA NA mgO2/hr 8.095262
#> 11: NA 9 3.341216 0.0009613981 0.678 238.3070 3158 4105 3157 4104 6.61 7.08 0.0009613981 NA NA 0.0009613981 mg/L sec 2.379 NA NA NA NA NA 8.233798 NA NA mgO2/hr 8.233798
#> 12: NA 8 3.298448 0.0009732830 0.680 257.0379 3161 4100 3160 4099 6.61 7.08 0.0009732830 NA NA 0.0009732830 mg/L sec 2.379 NA NA NA NA NA 8.335585 NA NA mgO2/hr 8.335585
#> 13: NA 7 3.251506 0.0009862129 0.684 288.6348 3165 4096 3164 4095 6.61 7.03 0.0009862129 NA NA 0.0009862129 mg/L sec 2.379 NA NA NA NA NA 8.446321 NA NA mgO2/hr 8.446321
#> 14: NA 6 3.204332 0.0009992067 0.687 318.1555 3169 4092 3168 4091 6.60 7.06 0.0009992067 NA NA 0.0009992067 mg/L sec 2.379 NA NA NA NA NA 8.557605 NA NA mgO2/hr 8.557605
#> 15: NA 5 3.137644 0.0010175037 0.691 370.9729 3175 4087 3174 4086 6.60 7.07 0.0010175037 NA NA 0.0010175037 mg/L sec 2.379 NA NA NA NA NA 8.714309 NA NA mgO2/hr 8.714309
#> 16: NA 3 2.917014 0.0010782058 0.704 1076.8737 3193 4069 3192 4068 6.61 7.11 0.0010782058 NA NA 0.0010782058 mg/L sec 2.379 NA NA NA NA NA 9.234186 NA NA mgO2/hr 9.234186
#> -----------------------------------------
## Select rates with r-squared higher than 0.99,
## then select the lowest 10th percentile of the remaining rates,
## then take the mean of those
inspect(squid.rd, plot = FALSE) %>%
auto_rate(method = "linear",
plot = FALSE) %>%
convert_rate(oxy.unit = "mg/L",
time.unit = "s",
output.unit = "mg/h",
volume = 2.379) %>%
summary() %>%
select_rate(method = "rsq", n = c(0.99, 1)) %>%
select_rate(method = "lowest_percentile", n = 0.1) %>%
mean()
#> inspect: Applying column default of 'time = 1'
#> inspect: Applying column default of 'oxygen = 2'
#> inspect: No issues detected while inspecting data frame.
#>
#> # print.inspect # -----------------------
#> Time Oxygen
#> numeric pass pass
#> Inf/-Inf pass pass
#> NA/NaN pass pass
#> sequential pass -
#> duplicated pass -
#> evenly-spaced pass -
#>
#> -----------------------------------------
#> auto_rate: Applying default 'width' of 0.2
#> convert_rate: Object of class 'auto_rate' detected. Converting all rates in '$rate'.
#>
#> # summary.convert_rate # ----------------
#> Summary of all converted rates:
#>
#> rep rank intercept_b0 slope_b1 rsq density row endrow time endtime oxy endoxy rate adjustment rate.adjusted rate.input oxy.unit time.unit volume mass area S t P rate.abs rate.m.spec rate.a.spec output.unit rate.output
#> 1: NA 1 7.725675 -0.00030671573 1.000 41732.895 7587 13849 7586 13848 5.402033 3.490669 -0.00030671573 NA NA -0.00030671573 mg/L sec 2.379 NA NA NA NA NA -2.6268362 NA NA mgO2/hr -2.6268362
#> 2: NA 2 7.696412 -0.00030427959 1.000 30776.050 2354 13848 2353 13847 7.005635 3.490669 -0.00030427959 NA NA -0.00030427959 mg/L sec 2.379 NA NA NA NA NA -2.6059721 NA NA mgO2/hr -2.6059721
#> 3: NA 3 1.696591 -0.00001356731 0.986 17165.553 27029 33129 27028 33128 1.336335 1.247246 -0.00001356731 NA NA -0.00001356731 mg/L sec 2.379 NA NA NA NA NA -0.1161958 NA NA mgO2/hr -0.1161958
#> 4: NA 4 7.746758 -0.00031634557 1.000 9137.385 491 6484 490 6483 7.580664 5.701696 -0.00031634557 NA NA -0.00031634557 mg/L sec 2.379 NA NA NA NA NA -2.7093100 NA NA mgO2/hr -2.7093100
#> 5: NA 5 7.524215 -0.00028980112 0.999 4170.603 10296 16202 10295 16201 4.559737 2.867046 -0.00028980112 NA NA -0.00028980112 mg/L sec 2.379 NA NA NA NA NA -2.4819727 NA NA mgO2/hr -2.4819727
#> 6: NA 6 7.524647 -0.00028983504 0.999 4081.274 10293 16198 10292 16197 4.551638 2.867046 -0.00028983504 NA NA -0.00028983504 mg/L sec 2.379 NA NA NA NA NA -2.4822632 NA NA mgO2/hr -2.4822632
#> 7: NA 7 7.616206 -0.00029707913 0.999 4064.522 9530 15430 9529 15429 4.802707 3.061422 -0.00029707913 NA NA -0.00029707913 mg/L sec 2.379 NA NA NA NA NA -2.5443045 NA NA mgO2/hr -2.5443045
#> 8: NA 8 7.399963 -0.00028073360 0.999 2957.126 11172 17064 11171 17063 4.300569 2.640274 -0.00028073360 NA NA -0.00028073360 mg/L sec 2.379 NA NA NA NA NA -2.4043148 NA NA mgO2/hr -2.4043148
#> 9: NA 9 7.221442 -0.00026856267 0.999 2902.230 12191 18085 12190 18084 3.976609 2.405403 -0.00026856267 NA NA -0.00026856267 mg/L sec 2.379 NA NA NA NA NA -2.3000781 NA NA mgO2/hr -2.3000781
#> 10: NA 10 7.228643 -0.00026904096 0.999 2855.974 12148 18046 12147 18045 3.992807 2.413502 -0.00026904096 NA NA -0.00026904096 mg/L sec 2.379 NA NA NA NA NA -2.3041744 NA NA mgO2/hr -2.3041744
#> 11: NA 11 3.869899 -0.00009633980 0.984 2510.612 20621 26514 20620 26513 1.919463 1.360632 -0.00009633980 NA NA -0.00009633980 mg/L sec 2.379 NA NA NA NA NA -0.8250926 NA NA mgO2/hr -0.8250926
#> 12: NA 12 3.872769 -0.00009646109 0.985 2428.173 20610 26507 20609 26506 1.919463 1.360632 -0.00009646109 NA NA -0.00009646109 mg/L sec 2.379 NA NA NA NA NA -0.8261313 NA NA mgO2/hr -0.8261313
#> 13: NA 13 2.353593 -0.00003656900 0.887 2425.710 24183 30078 24182 30077 1.522612 1.287741 -0.00003656900 NA NA -0.00003656900 mg/L sec 2.379 NA NA NA NA NA -0.3131916 NA NA mgO2/hr -0.3131916
#> 14: NA 14 2.555133 -0.00004402287 0.904 2285.575 23732 29621 23731 29620 1.563107 1.295840 -0.00004402287 NA NA -0.00004402287 mg/L sec 2.379 NA NA NA NA NA -0.3770294 NA NA mgO2/hr -0.3770294
#> 15: NA 15 2.621934 -0.00004652541 0.910 2276.370 23586 29475 23585 29474 1.579305 1.295840 -0.00004652541 NA NA -0.00004652541 mg/L sec 2.379 NA NA NA NA NA -0.3984623 NA NA mgO2/hr -0.3984623
#> 16: NA 16 6.921750 -0.00024956371 0.998 2196.575 13606 19510 13605 19509 3.547362 2.105740 -0.00024956371 NA NA -0.00024956371 mg/L sec 2.379 NA NA NA NA NA -2.1373634 NA NA mgO2/hr -2.1373634
#> 17: NA 17 3.193194 -0.00006863164 0.966 2137.336 22329 28218 22328 28217 1.708889 1.312038 -0.00006863164 NA NA -0.00006863164 mg/L sec 2.379 NA NA NA NA NA -0.5877888 NA NA mgO2/hr -0.5877888
#> 18: NA 18 3.238228 -0.00007042412 0.968 2128.287 22224 28114 22223 28113 1.716988 1.312038 -0.00007042412 NA NA -0.00007042412 mg/L sec 2.379 NA NA NA NA NA -0.6031404 NA NA mgO2/hr -0.6031404
#> 19: NA 19 3.529099 -0.00008216956 0.980 2064.339 21528 27423 21527 27422 1.806077 1.320137 -0.00008216956 NA NA -0.00008216956 mg/L sec 2.379 NA NA NA NA NA -0.7037330 NA NA mgO2/hr -0.7037330
#> 20: NA 20 3.527953 -0.00008212276 0.980 2061.832 21531 27426 21530 27425 1.806077 1.320137 -0.00008212276 NA NA -0.00008212276 mg/L sec 2.379 NA NA NA NA NA -0.7033322 NA NA mgO2/hr -0.7033322
#> 21: NA 21 4.618462 -0.00012945932 0.986 1627.855 18663 24558 18662 24557 2.275819 1.482117 -0.00012945932 NA NA -0.00012945932 mg/L sec 2.379 NA NA NA NA NA -1.1087414 NA NA mgO2/hr -1.1087414
#> 22: NA 22 6.256476 -0.00021131531 0.990 1483.947 15476 21362 15475 21361 3.053323 1.830374 -0.00021131531 NA NA -0.00021131531 mg/L sec 2.379 NA NA NA NA NA -1.8097888 NA NA mgO2/hr -1.8097888
#> 23: NA 23 5.003125 -0.00014746532 0.983 1483.345 17884 23770 17883 23769 2.445898 1.563107 -0.00014746532 NA NA -0.00014746532 mg/L sec 2.379 NA NA NA NA NA -1.2629520 NA NA mgO2/hr -1.2629520
#> 24: NA 24 6.536083 -0.00022690222 0.994 1479.930 14858 20751 14857 20750 3.223402 1.903265 -0.00022690222 NA NA -0.00022690222 mg/L sec 2.379 NA NA NA NA NA -1.9432814 NA NA mgO2/hr -1.9432814
#> 25: NA 25 6.410919 -0.00021986472 0.993 1479.678 15148 21037 15147 21036 3.142412 1.870869 -0.00021986472 NA NA -0.00021986472 mg/L sec 2.379 NA NA NA NA NA -1.8830094 NA NA mgO2/hr -1.8830094
#> 26: NA 26 5.448574 -0.00016920383 0.984 1444.875 17037 22925 17036 22924 2.648373 1.644097 -0.00016920383 NA NA -0.00016920383 mg/L sec 2.379 NA NA NA NA NA -1.4491293 NA NA mgO2/hr -1.4491293
#> 27: NA 27 5.447812 -0.00016916519 0.984 1427.124 17038 22927 17037 22926 2.648373 1.635998 -0.00016916519 NA NA -0.00016916519 mg/L sec 2.379 NA NA NA NA NA -1.4487984 NA NA mgO2/hr -1.4487984
#> 28: NA 28 5.612589 -0.00017745603 0.985 1414.277 16720 22608 16719 22607 2.721264 1.676493 -0.00017745603 NA NA -0.00017745603 mg/L sec 2.379 NA NA NA NA NA -1.5198044 NA NA mgO2/hr -1.5198044
#> 29: NA 29 5.447593 -0.00016915367 0.984 1412.792 17038 22928 17037 22927 2.648373 1.635998 -0.00016915367 NA NA -0.00016915367 mg/L sec 2.379 NA NA NA NA NA -1.4486997 NA NA mgO2/hr -1.4486997
#> 30: NA 30 5.529651 -0.00017326545 0.984 1404.338 16879 22768 16878 22767 2.688868 1.660295 -0.00017326545 NA NA -0.00017326545 mg/L sec 2.379 NA NA NA NA NA -1.4839146 NA NA mgO2/hr -1.4839146
#> 31: NA 31 5.477106 -0.00017062925 0.984 1399.533 16981 22871 16980 22870 2.656472 1.644097 -0.00017062925 NA NA -0.00017062925 mg/L sec 2.379 NA NA NA NA NA -1.4613371 NA NA mgO2/hr -1.4613371
#> rep rank intercept_b0 slope_b1 rsq density row endrow time endtime oxy endoxy rate adjustment rate.adjusted rate.input oxy.unit time.unit volume mass area S t P rate.abs rate.m.spec rate.a.spec output.unit rate.output
#> -----------------------------------------
#> select_rate: Selecting rates with rsq values between 0.99 and 1...
#> ----- Selection complete. 18 rate(s) removed, 13 rate(s) remaining -----
#> select_rate: Selecting lowest 10th percentile of *absolute* rate values...
#> ----- Selection complete. 11 rate(s) removed, 2 rate(s) remaining -----
#>
#> # mean.convert_rate # -------------------
#> Mean of all rate results:
#>
#> Mean of 2 output rates:
#> [1] -1.846399
#> [1] "mgO2/hr"
#> -----------------------------------------
# }